The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce

(AUTONOMOUS)

College with Potential for Excellence

Mithaghar Road, Mulund East, Mumbai-400081, India

Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262

email : vazecollege@gmail.com

Syllabus for Program F.Y. B. Sc. Mathematics

Syllabus as per Choice Based Credit System (NEP-2020)

(July 2023 Onwards)

Submitted by

Department of Mathematics Vinayak Ganesh Vaze College of Arts, Science and Commerce Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262 E-mail: <u>vazecollege@gmail.com</u> Website : <u>www.vazecollege.net</u>

	Major						OJT,	
Semester	Mandatory	Elective	Minor	OE	VSC/SEC	AEC,VEC,IKS	FP,CE P,CC, RP	Total
Ι	4 Credit (2L+2P) (One Paper)		4 Credit (2L+2P) (One Paper)	4 Credit (3L+1P) (One Paper)	4 Credit VSC (2L+2P) (One Paper)	AEC - 2 Credit VEC-2 Credit IKS - 2 Credit (One Paper)		22
II	4 Credit (2L+2P) (One Paper)		4 Credit (2L+2P) (One Paper)	4 Credit (3L+1P) (One Paper)	4 Credit SEC (2L+2P) (One Paper)	AEC - 2 Credit VEC-2 Credit (One Paper)	CC-2	22
TOTAL	8		8	8	8	10	2	44

<u>Programme Structure and Course Credit Scheme</u>:

* <u>Semester-wise Details of Mathematics Course</u>

				Seme	ster - I				
Teaching Scheme (Hrs/Week)			Continuous Internal Assessment (CIA) 40 marks		End Semester Examination Marks		Total		
Course	L	Р	Credit	CIA-1	CIA-2	CIA-3	Theory	Practical	
Major	02	4	4.0	15	15	10	60	100	200
Minor	02	4	4.0	15	15	10	60	100	200
VSC	02	4	4.0	15	15	10	60	100	200
OE	03	2	4.0	15	15	10	60	50	150
				<u> </u>	<u> </u>	<u> </u>	1	1	<u> </u>
CIA-II : A	ssignment	Project	, CIA-	-III : AP	ICID&A				
Max. Time,	End Seme	ster Exa	am (Theor	y): 2.0	00 Hrs.				

Semester - II									
Teaching Scheme (Hrs/Week)				Continuous Internal Assessment (CIA) 40 marks					Total
Course	L	Р	Credit	CIA-1	CIA-2	CIA-3	Theory	Practical	
Major	02	4	4.0	15	15	10	60	100	200
Minor	02	4	4.0	15	15	10	60	100	200
SEC	02	4	4.0	15	15	10	60	100	200
OE	03	2	4.0	15	15	10	60	50	150

CIA-II : Assignment/Project

CIA-III : APICID&A

Max. Time, End Semester Exam (Theory) : 2.00 Hrs.

▶ L - Lectures

> P - Practical

> C - Credits

	SEMESTER-I						
CODE	COURSE TYPE	COURSE TITLE	CREDITS				
VGVUSMMA101/	Major /Minor	Algebra-I	02				
VGVUSNMA101							
VGVUSMMAP101/	Major /Minor	Algebra-I	02				
VGVUSNMAP101		(Practical)	02				
VGVUSVS103	Vocational Skill Course (VSC)	Calculus-I	02				
VGVUSVSP103	Vocational Skill Course (VSC)	Calculus-I	02				
	vocational Skill Course (VSC)	(Practical)					
	Skill Enhancement Course (SEC)						
VGVUOE102	Open Elective (OE)	Basic Statistics	03				
	Open Elective (OE)	Basic Statistics	01				
	open Licenve (OL)	(Practical)					

	SEMESTER-II					
CODE	COURSE TYPE	COURSE TITLE	CREDITS			
VGVUSMMA201/ VGVUSNMA201	Major /Minor	Algebra-II	02			
VGVUSMMAP201/ VGVUSNMAP201	Major /Minor	Algebra-II (Practical)	02			
	Vocational Skill Course (VSC)					
VGVUSSE203	Skill Enhancement Course (SEC)	Calculus-II	02			
VGVUSSEP203	VGVUSSEP203 Skill Enhancement Course (SEC)		02			
VGVUOE204	Open Elective (OE)	Data Analytics	03			
	Open Elective (OE)	Data Analytics (Practical)	01			

	F.Y.B.Sc. (Major/Minor)					
	f the Course and Course Code /SMMA101/ VGVUSNMA101	ALGEBRA-I	No. of Ci	redits: 02		
Unit No.	(Content		No. of Lectures		
Ι	Unit – I (Matrices)			10 Hrs.		
	Definition of a Matrix, types of	matrices, transpose of mat	rix and its			
	properties, Orthogonal matrix	(Definition), properties of	orthogonal			
	matrix, its determinant. Determ	inant and its properties, ro	w echelon			
	form of a matrix, elementary	row operations, elementary	matrices,			
	rank of a matrix, System of line	ar equations in matrix form,	System of			
	m homogeneous linear equation	ns in n unknowns has a	non-trivial			
	solution if $m < n$.					
II	Unit-II (Eigen Values and Eigen Vectors)					
	Characteristic polynomial,	characteristics equation,	minimal			
	polynomial. standard formula to	calculate characteristic poly	ynomial of			
	2x2 and 3x3 matrices. charac	teristic and minimal poly	nomial of			
	orthogonal matrix. Definition of	f eigen value, examples, Th	eorems on			
	properties of eigen value.					
	Algebraic multiplicity and ge	eometric multiplicity, Eige	en vector,			
	examples (for distinct roots and	for repeated roots)				
III	Unit -III (Application of eigen	values and eigen vector)		10 Hrs.		
	Cayley Hamilton theorem, appli	cation of Cayley Hamilton	theorem to			
	find the inverse of a matrix. Di	agonalization of matrices ,I	Derogatory			
	Matrix, Finding n th power of a n	matrix.				

Learning Objectives:

1) To learn how to solve system of homogeneous and non-homogeneous equations with different methods.

2) To learn the concept of eigenvalues and eigenvectors and their importance in linear algebra.

3) To explore applications of eigen values in various fields such as physics, engineering and data analysis.

Learning Outcomes:

After learning this course, the learner will be able to

- 1. Develop the ability to solve systems of linear equations using various methods.
- 2. Differentiate between the types of matrices.
- 3. Solve the problems of finding inverse of matrix using Cayley's Hamilton theorem.

Recommended Books:

1) Linear Algebra by Nithya Sai NarayanaVipul Prakashan.

2) Linear Algebra, by Subhash Krishnan, Dr.Anil S.Vidya., Sheth Publication.

Reference Books:

1. Matrix and Linear Algebra, by K. B. Datta, Prentice Hall of India Pvt. Ltd. New Delhi, 2000.

- 2. A Text Book of Matrices, by Shanti Narayan, S. Chand Limited, 2010.
- 3. Schaum's Outline of Theory and Problems of Matrices, by Richord Bronson, McGraw-

Hill, New York, 1989.

- 4. "Linear Algebra" by J.N. Sharma
- 5. "Matrix Algebra" by Abhay Bhattacharya and S.K. Jain

	F. Y.B.SC (Major/Minor)							
Title of t	the course and course code:	ALGEBRA-I	No. of					
VGVUS	VGVUSMMAP101/VGVUSNMAP101 (PRACTICAL) Credits:							
Practica	Practical /Lab work to be performed in Computer Lab							
List of P	Practicals to be done using SageM	[ath/Scilab/Maxima/Python:						
Sr.No	Topics							
1	Identification of types of Matrice	es						
2	Compute transpose, determinant	and rank of a matrix						
3	Orthogonal matrix and its charac	teristic polynomial						
4	Elementary Matrices and row ech	helon form						
5	Solving System of linear equatio	ns using rank of matrix						
6	Eigen values for higher order ma	trix						
7	Minimal polynomial of a various	s types of matrices						
8	Computation of eigen values using	ng formula						
9	Eigen vector (for both repeated a	nd non-repeated roots)						
10	Problems on properties of eigen	values						
11	Finding inverse of matrix							
12	Finding inverse of matrix using (Finding inverse of matrix using Cayley Hamilton Theorem						
13	Problems on Diagonalization of	matrices						
14	Computation of derogatory matri	ix						
15	Computation of n th power of a m	natrix						

F.Y (VOCATIONAL SKILL COURSE (VSC))						
and Co	f the Course ourse Code : /USVS103	CALCULUS -I	No. of Cre	dits: 02		
Unit No.	Content					
I	Real Number SystemReal number system R and order properties of R , Absolute value and its properties, AM-GM inequality, Cauchy Schwarz inequality, Intervals and neighbourhoods, Hausdroff property, Bounded sets, supremum, infimum and their properties, statement of L.U.B. axiom, Archimedean property and its applications, Density of rationals in R, Existence of nth root of positive real numbers.SequencesDefinition of a sequence and examples, convergence and divergence of sequences, Boundedness of convergent sequence, Uniqueness of limit of a convergent sequence, Algebra of convergent sequences, Sandwich theorem, Monotone sequences, monotone convergence theorems and consequences. Every					
III	sequence. Ca Limits and C Graphs c $ x , e^x, sinx, c$ function, (ε – simple functi exists, Algeb non-existence Continuous f terms of limit points of de	of some standard functions osx, tanx, $\ln x, \frac{1}{x}$ over suitable intervals of δ) definition of limit of a function, Evaluat ons using ($\epsilon - \delta$) definition, uniqueness of ra of limits, Sandwich theorem for limits, on of limits, limit at infinity and infinite limits functions: Continuity of a real valued function ts, examples, Continuity of a real valued function comain, Sequential continuity, Algebra of ascontinuous functions, examples of real	such as R. limit of a ion of limit of limit when it he sided limit, s. on on a set in unction at end of continuous	10 Hrs.		

Learning Objectives:

- 1) Understand the relationships between natural numbers, integers, rational numbers, and irrational numbers as subsets of the real numbers.
- 2) Understand the domain and range of a sequence.

3) Classify a sequence as finite or infinite.

4) To understand the behavior of a function as its independent variable approaches a specific value.

Learning Outcomes:

After learning this course, the learner will be able to

- Understand many properties of the real line ℝ and learn to define sequence in terms of functions from ℝ to a subset of ℝ..
- 2) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence.
- 3) Calculate the limit and examine the continuity of a function at a point.
- 4) Sketch curves in Cartesian and polar coordinate systems.

Recommended Books:

1) Calculus ,Vipul Prakashan,Latika Bonde, Nithya Sai Narayana.

2)Calculus,Sheth Publication, Dr.Neena A. Joshi, Dr.Anil S.Vaidya.

Reference Books:

- 1. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, third edition, John Wiley & Sons, Inc.
- R. R. Goldberg, Methods of real analysis, Indian Edition, Oxford and IBH publishing, New Delhi.
- 3. Tom M. Apostol, Calculus Vol.1, Second edition, John Wiley & Sons.
- 4. Ajit Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC Press.

Vocat	ional Skill Course (VSC)					
Title of the course and	CALCULUS-I	No.of				
course code : VGVUSVSP103	(PRACTICAL)	credits:02				
Practical /lab work to be perform	ed in computer lab.					
List of practicals to be done using	SageMath/Scilab/Maxima/Python.					
1) Order properties, absolute value						
2)AM-GM inequality						
3) Hausdorff property.						
4) Bounded sets						
5) Supremum and Infimum						
6) Archimedian property						
7) Convergent sequences .						
8) Divergent sequences .						
9) Sandwich theorem.						
10) Monotone sequences						
11) Cauchy sequences						
12) Subsequences						
13) Drawing graphs of functions.	13) Drawing graphs of functions.					
14) Limits and Continuity of function	14) Limits and Continuity of functions.					
15) Non-existence of limits .						

(OPEN ELECTIVE (OE))						
(For Arts and Commerce Students)						
	e of the Course and e Code -VGVUOE102 BASIC STATISTICS	C	No. of redits: 03			
Unit			No. of			
No.	Content		Lectures			
Ι	Summarization Measures					
	Measures of Central Tendencies:					
	Definition of Average, Types of Averages: Arithmetic Mean, Mea	lian,				
	and Mode for grouped as well as ungrouped data. Quartiles, De	ciles				
	and Percentiles. Using Ogive locate median and Quartiles. U	sing				
	Histogram locate mode. Combined and Weighted mean.					
	Measures of Dispersion:					
	Concept and idea of dispersion. Various measures: Range, Qua	rtile				
	Deviation, Mean Deviation, Standard Deviation, Variance, Comb	ined				
	Variance.					
II	Bivariate Linear Correlation and Regression		15 Hrs.			
	Correlation Analysis:					
	Meaning, Types of Correlation, Determination of Correlation: Sc					
	diagram, Karl Pearson's method of Correlation Coefficient	and				
	Spearman's Rank Correlation Coefficient.					
	Regression Analysis:					
	Meaning, Concept of Regression equations, Slope of the Regres					
	Line and its interpretation. Regression Coefficients, Relation	_				
	between Coefficient of Correlation and Regression Coefficient	,				
	Finding the equations of Regression lines by method of Least Squa	res.	15 11			
III	Time series and Index Numbers		15 Hrs.			
	Time Series:	hr				
	Concepts and components of a time series. Representation of trend Erashand Curva Mathed, Estimation of Trand using Maying Ava	•				
	Freehand Curve Method, Estimation of Trend using Moving Ave Method and Least Squares Method. Estimation of Seas	-				
	Component using Simple Arithmetic Mean for Additive Model					
	component using simple rintimetre tricuit for riduitive filoder	<u>y</u>				

(For Trend free data only). Concept of Forecasting using Least Squares Method.

Index Numbers:

Concept and usage of Index numbers, Types of Index numbers, Aggregate and Relative Index Numbers, Lasperye's, Paasche's, Dorbish Bowley's, Marshall-Edgeworth and Fisher's ideal index numbers, Test of Consistency: Time Reversal Test and Factor Reversal Test. Chain Base Index Nos. Shifting of Base year. Cost of Living Index Numbers, Concept of Real Income, Concept of Wholesale Price Index Number.

Learning objective

- 1. The main objective of this course is to introduce statistics to undergraduate students of commerce, so that they can use them in the field of commerce and Industry to solve the real life problems.
- 2. To analyze the result by data handling.
- 3. To judge the reliability of measures of central tendency and measures of dispersions.
- 4. To introduce time series using moving average method and least square method.

Learning outcomes

- 1. Understand the operations research methodology and the problem solving approach.
- 2. Understand what are Mean, Median and Mode and how to calculate it.
- 3. Understand how all of alternative measures differ and why.
- 4. Calculate and interpret the correlation between two variables.
- 5. Determine whether the correlation is significant.
- 6. Calculate the simple linear regression equation for a set of data and know the basic assumptions behind regression analysis.
- 7. Determine whether a regression model is significant.
- 8. Differentiate among simple index numbers, unweighted aggregate price index numbers, weighted aggregate price index numbers, Laspeyres price index numbers, and Paasche price index numbers by defining and calculating each.

Recommended Books:

1)Mathematical & Statistical Techniques by Manan Prakashan.

2)Mathematical & Statistical Techniques by Dr.Neena Joshi, Dr.N.N.Pandey. Sheth Publication.

Reference Books

- 1. Operations Research by Gupta and Kapoor Operations Research by Schaum Series
- 2. Fundamentals of Statistics D. N. Elhance.
- 3. Statistical Methods S.G. Gupta (S. Chand & Co.
- 4. Statistics for Management Lovin R. Rubin D.S. (Prentice Hall of India)
- 5. Statistics Theory, Method & Applications D.S.Sancheti& V. K. Kapoor.

	(OPEN ELECTIVE (OE))							
((For Arts and Commerce Students)							
Title of the Course	BASIC STATISTICS	No. of						
And Course code(PRACTICAL)Credits:								
Practical/Lab work to be	performed in Computer Lab.							
List of practicals to be do	one using Excel:							
1. Computation of I	Measures of Central tendency for raw data.							
2. Computation of I	Measures of Central tendency for discrete and cont	tinuous data.						
3. Computation of I	Measures of dispersion for raw data.							
4. Computation of I	Measures of dispersion for discrete and continuous	s data						
5. Graphical Presen	tation of data (Histogram, Frequency polygon, Og	gives)						
6. Computation of Computation	Correlation coefficients							
7. Plotting of scatte	r diagram							
8. Computation of 1	regression lines							
9. Measurement of	trend by method of moving averages.							
10. Measurement of	trend by method of least squares.							
11. Measurement of	seasonal indices by the method of Ratio to trend.							
12. Computation of i	ndex numbers.							
13. Computation of 1	real income.							
14. Computation of	weighted and unweighted price index number.							
15. Computation of I	Lasperye's, Paasche's, Dorbish Bowley's, Marshal	ll-Edgeworth and						
Fisher's ideal inc	lex numbers.							

F.Y.B.Sc (Major/Minor)					
Title	of the Course and Course Code	ALGEBRA -II	No. of		
VGVU	SMMAP201/VGVUSNMAP201	ALGEDIA -II	Credits: 02		
Unit	Cor	itent	No. of		
No.			Lectures		
I	Number theoretic functions and I	Divisibility of integers	10 Hrs.		
	Number theoretic functions: Euler theorem, tau function, sigma functi Divisibility in integers, division a (g.c.d.) and least common multip properties of g.c.d. such as exist integers a & b and that the g.c.d. some $m, n \in \mathbb{Z}$, Euclidean a Fundamental theorem of arithme Congruences, Fermat's theorem, G and their applications.	on. lgorithm, greatest common divise ble (l.c.m.) of two integers, bas tence and uniqueness of g.c.d. of can be expressed as $ma + nb$ for lgorithm. Euclid's lemma,Prime tic, the set of primes is infinit	or c of or s, e.		
II	Equivalence Relations and Funct	ions	10 Hrs.		
	Binary operation, properties, Equivalence classes, properties su either identical or disjoint, Definition an equivalence relation and vice ver Definition of a function, domain, or composite functions, examples, functions, Composite of injective, defined, invertible functions, bijec conversely. Types of functions suc inclusion.	ch as two equivalences classes and on of partition, every partition give rsa. co-domain and range of a function injective, surjective, bijectiv surjective, bijective functions whe ctive functions are invertible ar	re es n, re n d		
III	Polynomials		10 Hrs.		
	Definition of polynomials over polynomials, degree of polyno algorithm in $F[x]$, g.c.d. of two polyno Euclidean algorithm, applications between roots and coefficients, in theorem, Factor theorem.	mial, basic properties. Division lynomials and its basic properties , Roots of a polynomial, relation	n , n		

Learning Objectives:

- 1) To learn the number theoretic functions and their application in various contexts such as cryptography.
- 2) To provide a framework to analyze and understand the properties of prime numbers, congruences and deep understanding of number theory.
- 3) To study functions to learn how to study graphs and analyze their properties such as intercepts and symmetry.
- 4) To Understand polynomial in finding roots, solving equations, and simplifying complex expressions.

Learning Outcomes:

After learning this course, the learner will be able to

- Apply relations and functions in business.
- Provide a framework for analyzing number sequences, patterns other number sequences using concepts like divisibility and congruences.
- Differentiate between the types of functions.
- Learn the algebraic properties of polynomial.

Recommended Books:

1)Algebra by Nithya Sai Narayana, Vipul Prakashan.

2) Algebra by Subhash Krishnan, Dr. Anil S. Vidya. Sheth Publication.

Reference Books:

- 1. David M. Burton, Elementary Number Theory, Seventh Edition, McGraw Hill Education (India) Private Ltd.
- 2. Norman L. Biggs, Discrete Mathematics, Revised Edition, Clarendon Press, Oxford
- 3. Ajit kumar S. Kumaresan & B.K. Sarma, A Foundation Course in Mathematics, Narosa publishing House .
- 4. N. S. Gopalkrishnan, University Algebra, New Age International Ltd
- 5.. I.N. Herstein, Topics in Algebra, John Wiley

F.Y.B.SC (Major/Minor)				
Title o	Title of the course and course code :ALGEBRA-IINo. of			
VGVUS	VGVUSMMAP201/VGVUSNMAP201 (PRACTICAL) Credits: 02			
Practica	l/Lab work to be performed in (Computer Lab		
List of P	racticals to be done using SageM	lath/Scilab/Maxima/Python:		
Sr.No	Topics			
1	Finding divisors and number of divisors using tau and sigma function.			
2	Finding GCD of two integers			
3	Problems on Fermat's theorem and Gauss theorem			
4	Problems on Wilson theorem			
5	Finding last digit and remainder using Fermat's and Wilson theorem.			
6	Problems on binary operation and its property			
7	Equivalence relation and partition			
8	Identification of types of functions			
9	Problems on injection, surjection and bijection of function			
10	Composition of function			
11	Algebra of polynomials			
12	Computation of GCD of polynomials.			
13	Relation between roots and coeff	ficients		
14	Problems on Remainder theorem			
15	Problems on Factor theorem			

F.Y.B.Sc [SKILL ENHANCEMENT COURSE (SEC)]				
Title of the Course andNCALCULUS -II			No. of	
Cours	rse Code : VGVUSSE203 Cre		edits: 02	
Unit No.	Content			No. of Lectures
Ι	Series			10 Hrs.
	Infinite series of real numbers, convergent series, divergent series.			
	Necessary condition for	convergence of series. Algebra of conver	rgent	
	series, harmonic series,	p-harmonic series, Comparison test, I	Limit	
	comparison test, ratio te	est (without proof), root test (without pr	roof)	
	and examples, alternatin	ng series, Leibnitz test for alternating se	eries,	
	absolute convergence, conditional convergence.			
II	Continuity and Its Applications			10 Hrs.
	Continuity of real valued functions with domain as intervals in R,			
	examples, continuity of functions at end points of interval, Sequential			
	continuity, Algebra of continuous functions, continuity of composite			
	functions. Discontinuous functions, examples of removable and			
	essential discontinuities. Sign preserving property of continuous			
	function. Intermediate value theorem and its applications. Bolzano			
	Weierstrass Theorem			
III	Differentiability and Its	s Applications		10 Hrs.
			sical	
	1	rentiable functions, necessary condition		
	-	valued function, algebra of different	iable	
	functions, derivative of inverse functions, chain rule.			
	Higher order derivatives, Leibnitz rule, implicit differentiation,			
	Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean			
	value theorem, increasing and decreasing functions, extreme values,			
		erivative test, second derivative test, point	nt of	
	inflection, convex and co	oncave functions		

Learning Objectives:

- 1) Defining continuity on an interval.
- 2) Understanding, and investigating uses of the Intermediate Value Theorem.
- 3) Understanding the types of functions that are always continuous over their entire domain.
- 4) The learning objectives of differentiability and its application include understanding the concepts like continuity at a point, continuity on an interval, derivative of functions and many more.
- 5) Differentiability has many applications in real life. For example, it can be used to find the maximum or minimum value of a function. It can also be used to find the rate of change of a function.

Learning Outcomes:

On studying the syllabi, the learner will be able to understand

- Convergence and divergence of Series
- Absolute & conditional convergence.
- Continuity & Sequential continuity
- Intermediate value theorem and Bolzano Weierstrass Theorem
- Differentiability with geometrical and physical interpretation
- Mean value theorem & its applications

Recommended Books:

- 1) Calculus by Latika Bonde, Nithya Sai Narayana, Vipul Prakashan,
- 2) Calculus by Dr.Neena A. Joshi, Dr.Anil S.Vaidya, Latika Bonde, Nithya Sai Narayana.

Reference Books :

- 1.Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, third edition, John Wiley & Sons, Inc.
- 2. R. R. Goldberg, Methods of real analysis, Indian Edition, Oxford and IBH publishing, New Delhi.
- 3. Tom M. Apostol, Calculus Vol.1, Second edition, John Wiley & Sons
- 4. Ajit Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC Press.

F.Y.B.SC [Vocational Skill Course (VSC)]			
Title of the course and courseCALCULUS-IINo.of			
code : VGVUSNMAP201	(PRACTICAL)	credits:02	
Practical /lab work to be perfor	med in computer lab.		
List of practicals to be done using	ng SageMath/Scilab/Maxima/Python.		
1. Learning series of real nur	nbers.		
2. Check behavior of series u	2. Check behavior of series using sequence of partial sums.		
3. Some tests for convergence	e.		
4. Alternating series.			
5. Continuous functions ε - δ	5. Continuous functions ε - δ definition.		
6. Sequential continuity.	6. Sequential continuity.		
7. Applications of continuou	s functions.		
8. Leibnitz theorem,			
9. Mean value theorems			
10. Increasing and decreasing functions.			
11. Extreme values.			
12. Stationary points.			
13. point of inflection.			
14. Convex and Concave func	tions.		
15. Taylor's Theorem.			

(OPEN ELECTIVE (OE))				
	(For Arts and Commerce Students)			
	Title of the Course and DATA ANALYTICS Course Code -VGVUOE204 Output			
Unit No.	Content		No. of Lectures	
Ι	Spread Sheet			
	a) Creating and Nav	igating worksheets and adding information	15 Hrs.	
	to worksheets			
	• Types of data, ent	ering different types of data such as texts,		
	numbers, Date, function	ons.		
	• Quick way to add	data Auto complete, Autocorrect, Auto fill,		
	Auto fit. Undo and Re	edo.		
	• Moving data, contiguous and non-contiguous selections, Selecting			
	with keyboard. Cut-Copy, Paste. Adding and moving columns or			
	rows.			
	Inserting columns and	rows.		
	• Find and replace values. Spell check.			
	• Formatting cells, Numbers, Date, Times, Font, Colors, Borders,			
	Fills.			
	b) Multiple Spreadsheets			
	• Adding, removing, h	iding and renaming worksheets.		
	• Add headers/Footers	to a Workbook. Page breaks, preview.		
	• Creating formulas, in	nserting functions, cell references, Absolute,		
	Relative (within a	worksheet, other worksheets and other		
	workbooks).			
	c) Functions			
	• Financial functions:	FV, PV, PMT, PPMT, IPMT, NPER, RATE		
	• Mathematical and sta	atistical functions. ROUND, ROUNDDOWN,		
	ROUNDUP, CEILIN	G, FLOOR, INT, MAX, MIN, MOD, SQRT,		
	ABS, SUM, COUNT,	AVERAGE		
	d) Data Analysis			

15 Hrs.
15 Hrs.

Statements (Schema Statements, Data statements, Transaction statements), names (table & column names), data types (Char, Varchar, Text, Mediumtext, Long text, Smallint, Bigint, Boolean, Decimal, Float, Double, Date, Date Time, Timestamp, Year, Time), Creating Database, inserting data, updating data, Deleting data, expressions, built-in-functions - lower, upper, reverse length, Ltrim, Rtrim, trim, left, right, mid, concat, now, time, date, curdate, day, month, year, dayname, monthname, abs, pow, mod, round, sqrt missing data (NULL and NOT NULL DEFAULT values) CREATE, USE, ALTER (Add, Remove, Change columns), RENAME, SHOW, DESCRIBE (CREATE TABLE, COLUMNS, STATUS and DATABASES only) and DROP (TABLE, COLUMN. DATABASES statements), PRIMARY KEY FOREIGN KEY (One and more columns) Simple Validity checking using CONSTRAINTS.

c) MySQL Simple queries:

The SELECT statement (From, Where, Group By, Having, Order By,Distinct, Filtering Data by using conditions. Simple and complex conditions using logical, arithmetic and relational operators (=, !,=, <, >, < >, AND, OR, NOT, LIKE) Aggregate Functions: count, sum, avg, max, min.

d) Multi-table queries:

Simple joins (INNER JOIN), SQL considerations for multi table queries (table aliases, qualified column names, all column selections self joins).

e) Nested Queries (Only up to two levels) :

Using sub queries, sub query search conditions, sub queries & joins, nested sub queries, correlated sub queries, sub queries in the HAVING clause. Simple Transaction illustrating START, COMMIT, and ROLLBACK.

Learning objective

- 1. To provide basic knowledge of MS-Excel for Statistical Techniques to the students.
- 2. To identify spreadsheet terminology and concepts, create formulas and functions, use formatting features, and generate charts, graphs, and reports.
- 3. To analyse numerical data by using statistical tools and functions.
- 4. Be able to write SQL statements that create database objects.

Learning outcomes

- 1. Understand the various database structures.
- 2. Create database, and perform various commands related to database.
- 3. Plot Column, Line, Pie and Bar charts for the given data.
- 4. Understand how to use excel and its features.
- After completing the practical course students are getting knowledge about the MS-Excel, Students are able to draw diagram and graphs by using MS-Excel.Write complex SQL queries to retrieve information from databases with many tables to support business decision making.

Recommended Books:

- 1) Computer system & Applications by Manan Prakashan.
- 2) Computer system & Applications by Sheth Publication.
- 3) Computer Systems and Applications Faiyaz Gadiwala ,Sheth Publication.
- 4) Computer Systems and Applications, Verus D'sa, Marvel Publication.

Reference books

- 1."Applied Data Communications And Networks" By B Buchanan.
- 2.Mysql: The Complete Reference By Vaswani, Mcgraw Hill.
- 3. Mysql: Sql Database Programming For Beginners By By Kevin Lioy

(OPEN ELECTIVE (OE))			
(For Arts and Commerce Students)			
Title of the Course DATA ANALYTICS No. of Credits:			
And Course code	(PRACTICAL)		
Practical/Lab work to	be performed in Computer Lab.		
List of practicals to be	e done using Excel and MySql :		
1.Perform following :			
i) Create Worksheet	i) Create Worksheet ii) Rename the worksheet		
iii) Hide the workshe	iv) Add and Delete the worksheet		
v) Cut-Copy, Paste.	vi) Add data Auto complete		
vii) Autocorrect	viii) Auto fill, Auto fit. Undo and Redo		
ix) Cut-Copy, Paste.	x) Save the worksheet		
2.Perform following :			
i) Inserting columns	s and rows.		
ii) Find and replace v	values		
iii) Check. Formattin	g cells, Numbers, Date, Times, Font, Colors, B	Borders, Fills.	
3. Creating multiple spi	eadsheets with Adding, removing, hiding and re	enaming worksheets &Add	
headers/Footers to a We	orkbook. Page breaks, preview. Creating formula	as, inserting functions, cell	
references, Absolute, R	elative (within a worksheet, other worksheets an	nd other workbooks).	
4. Computation of data	using Financial functions: FV, PV, PMT, PPMT	, IPMT, NPER, RATE	
5. Computation of data	using Mathematical and statistical functions.		
6. Sorting of data, findi	ng Subtotal of data, creating Pivot Tables.		
7.Computation of data	using Database Functions LOOKUP, VLOOKU	P, HLOOKUP Conditional	
Logic functions IF, Nes	ted IF, COUNTIF, SUMIF,AVERAGEIF,		
8. Computation of data	using String functions, Date functions, Statistica	al Functions.	
9. The Graphical representation of data Column, Line, Pie and Bar charts.			
10. Creating database in MySQL.			
11. Build functions in MySQL.			
12. Alter, delete, drop, clauses in MySQL.			
13. Aggregate functions in MySQL.			
14. Multitable (Join, groupby, having) queries in MySQL.			
15. Nested queries in MySQL.			

	THEORY EXAMINATION PATTERN FOR	
	(MAJOR/MINOR/VSC/SEC/OE)	
Que.1 A)	Attempt Any One:	(7 Marks)
	i) Theory Question based on Unit-I	
	ii) Theory Question based on Unit-I	
B)	Attempt Any Two:	(8 Marks)
	i) Problems based on Unit-I	
	ii) Problems based on Unit-I	
	iii) Problems based on Unit-I	
Que.2 A)	Attempt Any One:	(7 Marks)
	i) Theory Question based on Unit-II	
	ii) Theory Question based on Unit-II	
B)	Attempt Any Two:	(8 Marks)
	i) Problems based on Unit-II	
	ii) Problems based on Unit-II	
	iii) Problems based on Unit-II	
Que.3 A)	Attempt Any One:	(7 Marks)
	i) Theory Question based on Unit-III	
	ii) Theory Question based on Unit-III	
B)	Attempt Any Two:	(8 Marks)
	i) Problems based on Unit-III	
	ii) Problems based on Unit-III	
	iii) Problems based on Unit-III	
Q.4)	Solve the following.	(15 marks)
	i) Problems based on Unit-I	

Semester End Examinations Practicals:

At the end of the Semester, I & II Practical examinations of three hours duration and 100 marks shall be conducted for Major/Minor, VSE/SEC, courses.

Marks for Journals and Viva:

For each Major/ Minor, VSE/SEC, courses.

- 1. Journals: 10 marks.
- 2. Viva: 10 marks.
- 3. 40 Marks Computer based exam.
- 4. 40 Marks Practical theory exam.

PRACTICAL EXAMINATION PATTERN FOR THEORY

Que.1	Attempt any 8 objectives out of 12 from the following:	(8 x 3=24 Marks)
Que.2	Attempt any two from the following:	(8 x 2 =16 Marks)
	a) Based on unit-I	
	b) Based on unit-II	
	c) Based on unit-III	

OPEN ELECTIVE PRACTICAL EXAMINATION PATTERN

Semester End Examinations Practicals:

At the end of the Semester, I & II Practical examinations of three hours duration and **50** marks shall be conducted for OE paper.

Marks for Journals and Viva:

For each Open Elective (OE) course.

1. Journals: 10 marks.

- 2. Viva: 10 marks.
- 3. 30 Marks Computer based exam.